SOLUTION OF A PLANE, AXISYMMETRIC AND
THREE-DIMENSIONAL SINGLE-PHASE
STEFAN PROBLEM

A. D. Chernyshov UDC 536.42

Using a superposition method we construct a solution of the multidimensional problem of the
steady-state fusion regime of semibounded solids. The solution of the problem is reducedto
a generalized Fredholm integral equation of the first kind., A method is given for solving the
integral equation for plane problems by converting to a linear system of algebraic equations.

The problem of the temperature distribution in a solid when the melted phase moves away from the
surface of the solid is investigated, and the law of motion of the fusion boundary is a variant of the Stefan
problem. Such a problem arises in the study of the laws of fusion of bodies subjected to the flow of a hot
gas or liquid past them.

One-dimensional nonsteady and steady Stefan problems have been sufficiently completely investigated.
A review of these studies and the principal results are given in [1]. Considerable mathematical difficulties
arise in the solution of the non-one~dimensional Stefanproblems, At present there are no analytical solu-
tions for multidimensional problems with phase increments; only numerical methods of solution of similar
problems have been developed [2].

1. We assume that the body fuses along its surfaces. The temperature U on the surface Z of fusion
of the solid equals the temperature of the phase transition, which will be assumed equal to zero:

U, y, 2, 1)}y =0. (1.1)

In the interior points of the solid the temperature can be less than or equal to the temperature of the
phase transition:

U, 4, 2, D <0, _ 1.2)

The heat q supplied to the body from the external hot flow is used in heating the body to the melting
point and for the transition of the solid phase into the liquid phase
g=QV,—adUjon | . (1.3)

For active fusion, the velocity Vp is positive, i.e.,
V,>0. _ (1.4)
We add the following initial condition to the boundary conditions (1.1) and (1.3):
Ulx, y, 2, O =f(x, 1, 2). (1.5)
We write the heat equation in the form
g (2L LS U (1.6)
ot 0% ay” 2 )
We consider the problem of the steady-state fusion regime for a solid. We assume that for a time
sufficiently far from the initial time there exists a noninertial moving coordinate system (x*, y*, z*) in
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which the heat flux q, the form of the fusion surface Z, and its velocity of translational motion V,, and
also the temperature of the points of the solid, do not depend on the time, It is evident that a steady-state
fusion regime in general is possible only for semibounded tapered bodies. Dropping the superscript aster-
isks (x*, y*, z*), the problem takes the form

2 A2F T 277 (‘)3
M B +a{’)_3_v0 Yo, 1.7)
ax? P ora gz
Uy, , 2. =0, Ulx, 9, 220, (1.8}
g =QV,—rdU/onls, V,3=0. (1.9)

Here the direction of the z axis coincides with the direction of translational motion of the moving co~
ordinate system. Instead of initial condition (1.5) we set the condifion at infinity

U@, 4, 2) > Ulp {0 as 7 —o00. {1.10)
Problem (1.7)-(1.10) has two formulations: a) based on a given form of the fusion surface £, its
velocity of motion Vy, and temperature at infinity U,, we must determine the temperature field at the
solid phase and the heat flux q; b) based on the given heat flux g and temperature at infinity Uy, we must

determine the temperature field at the solid phase, the form of the fusion surface Z, and its velocity of
translational motion V.

2, Solution for steady-state fusion regime, We first consider the plane problem in the (y, z) co-
ordinate system. We introduce the notation

£ == zsinf-—ycosh. 2.1)

The geometrical sense of the quantity ¢ is the distance from the point {z, y) to the line £ = 0, The
positive direction of the line £ = 0 is chosen so that £ > 0 on the right, and £ < 0 on the left,

We will seek a particular solution of Eq. (1.7) in the form
Uz, ) =U(E) = C exp(—ak) - C,. (2.2)

Substituting (2.2) into (1.7), we obtain
o = (V,sin8)a. (2.3)
Thus, for the particular solution we have the equation
U =Cyexp(— &V,sin8/a) - C,. {2.4)
Let C; = C{#); then, using the superposition principle, we can write the solution of Eqg. (1.7) in the
form
£33 n N
U= Usli— [ C®)exp[—n(®)do— N Cexp(—n,)] ,
@, i=1 i {2.5}
N6} =sinb(zsin6-—yeos8) Vyja.

For § = 0 or 6 = 7 the particular solution (2.4) degenerates to a constant; therefore, the values 8
=0 and 6 = 1 can be eliminated from the solution (2.5). Thus, the limits of integration @y and oy, and
also the angles 6 and €; in the solution (2.5) should not assume the values 0 and 7. And since n(8) = n{r
+ 8}, without loss of generality in the investigations we can assume that the limits of variation of the
angles oy, a,, and 8 are contained on the interval (0, =),

Satisfying condition (1.8), we find the equation for the fusion surface

Dy, 2) = fC(e) exp (— (@) d0 ¥ Crexp(—u) = 1. (2.6)

Gy fzz=]

We obtain for the heat flux from (1.9) the equation

P T e
oV O} 4@ UV @@ = —g for © = 1. @2.7)
We convert to the construction of a solution of the problem in the formulation a). In this case the
equation of the surface T is assumed to be known and have the parametric form

2=HE), y=T0. (2.8)
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Substituting (2.8) into (2.6), we arrive at the generalized Fredholm integral equation of the first kind
in the functions C(#) and Cj:

oz

\. C (8) exp. [-—— %"— sin@ (f, (s)sin® — f, (s) cos G)] do -

21

2.9)

n

. Vo . .
-+ ; C;exp [——a~ smﬁi(fl(s)smei—fz(s)coseiﬂ =1,

From (2.7) we find the heat flux g, and from (2.5) we find the temperature field. If the problem is
solved in the formulation b), then in order to find Ci, C(9), and V, from (2.7) we arrive at the nonlinear
integral equation (2.7), where ¢y and &, have the form

@, ' n
O, = S C (0) sin 8 cos B exp [— n (0)] dO - 2 C,sin®; cos 6, exp (—n,),
&y )
o . (2.10)
D, =— S C (0) sin2 8 exp [-— 7 (€)] 0 — 2 C; sin®6; exp (— ;).
b‘: =1 .

Here it is necessary to give the position of the front point of the surface T or any other point. We
convert to the study of the properties of the solution (2.5). In subsequent investigations we will assume
that the angles #i are arranged in an increasing sequence 0 < 8 <0y < ... <fp < 7. We prove that in (2.5)
the solution in the form of a finite sum (when C(f) = 0) for Cj > 0 has the properties A;—A;.

A;. The two lines 1y = InC, and 7p = In Cn are asymptotes to the fusion surface Z.

A,, The surface T intersects none of the lines n; =InCj (i =1, ..., n), and approaches its asymp-
totes to the right.

A;. Any half-line I drawn from a point of the surface Z on the right parallel to the z axis belongs
entirely to the region of the fused body. For motion along ! in the direction of increasing z, the tempera-
ture U monotonically varies from 0 to Ug.

A,. At each point of the surface Z the angle between the inner normal and the z axis is acute, i.e.,
inequality (2.8) is satisfied.

A;. We consider the two solutions U and U, from (2.5), corresponding to the two sets {C;} and {C]}.
Let Cl =C!, 6, = 6; for i = k and C, > C{;, 0{{ =6, . Then on the (z, y) plane we have U; > U, and the fusion
surface £, will be located to the right of the surface T,. In this case the surfaces Z; and Z, do not inter-
sect anywhere, and they have the same asymptotes.

By. If C; < 0 or Cp-q < 0, then the surface T approaches from the left the asymptotes ny = InCy or nn

=1nCp, respectively.
n

We prove the property A;. On the line 7; = In Cy the function &(y, z) = ZCjexp (—nj) takes the values
i=1

Oy, 2) =1+ E C,exp(—mn;)>1 when n, == InC,. (2.11)
{=2
Since 0 < 0; < 8; <7 (i = 2...n), for motion along the line n; = InC in the positive direction the vari-
ables 7,. .. 1y increase without bound and ®(y, z) — 1. Hence we obtain the proof of property A;. As an
explanation we note that for n = 3 the line 7y = In C, cannot be an asymptote of the surface Z because of the
following reasons: on the line 1y = InC, for ®(y, z) we will have the equation

©(y, 2) =1+ Crexp(—y) + B Crexp (—my). (2.12)
=3

The inequalities 0 = 6; < 6, < §; = 7 insure that for motion along the line ny = InC, in the positive
direction the variables 7y ... nn increase without bound, and 7; decreases without bound. For motion along
the line 7, = InC, in the negative direction the variables 73 ... nn will decrease without bound, and n; will
increase without bound, so that everywhere along the line 75 = InC, we will have ®(y, z) > 1. Hence, in
particular, it follows that the surface Z nowhere intersects the line 5, = InC,. The surface Z also does
not intersect the asymptotes, which follows from the inequality in (2.11), and since on each line ni = InCj
the inequality @(y, z) > 1 is satisfied, we obtain the proof of property A,. Let Cy < 0. For motion along
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the line 7y = InCy in the positive direction the variables n3... 1p increase more rapidly than 7, (since 0
<Py < 03 < ... < 0p=m); therefore, for a sufficient distance from the line 7, = In (—Cy), when n{ > 5, (i
=3,..n) the sign of the sum in (2.11) will be determined by the sign of the principal term C,exp {—n,) < 0.
Hence we obtain that for 9y = InCyand ni — © (i =2.,.n), Cy < 0the function &y, z) < 1, i.e., the surface
Z approaches the asymptote 1; = InCy from the left (property B;).

For proof of property A; we differentiate ®{y, z) with respect to the coordinate z:

Vs

a

O, —— E}cism‘zei exp(—1,) < 0. 2.13)

Along the semibounded line 7, drawn from a point of the surface T parallel to the z axis, with in-
creasing z, the variables 15 i = 1..,. n) increase without bound, and it follows from the inequality &, < 0
that along I the function ®(y, z) varies monotonically from 1 on Z to 0 at infinity. Hence we have the
proof of property A;. As a corollary of property A; we obtain the proof of property A,;, since if the angle
between the inner normal and the z axis is obtuse, then the half-line ! will not belong entirely to the region
of the fused body.

We write the functions ¢, and &, corresponding to the two solutions U; and U, from (2.5) in the form

®, = 2 Ciexp(—muy) -~ C;c eXp {— 1),

f==
I=R

(2.14)

©,= ¥ Ciexp(—ny) + Crexp(— M)
i
=1
Let Cf{ > Ci;; then ®; > ¢, and on the basis of property A, the coordinates of the points My and M,,
belonging to the surfaces Z; and I, respectively, have the following property: for y; =y, it is necessary
that z; > z,, which also proves property A;.

We investigate the solution from (2.5) in the form of the sum of the integral with finite sum. In this
case C(0) and Cj should be determined from the generalized Fredholm integral equation of the first kind

e 23 n
} C (@ exp (— ) dO-- E Crexp(—mn,) = L. (2.15)
Uy {==l
It is known that in Eq. (2.15) the unknown function C{0) can have the form
i
Ch = B9 -~ ;\: C5(0-10y, (2.18)
i=n
where B(9) is a function that is summable and integrable in the sense of Lebesgue on the interval [eey, ool
without singularities of é-function type, (8 — 6i) is the Dirac delta function. Substitution of (2.16) into
(2.15) leads only to a change in the number of terms in the finite sum; therefore, below we assume that
C(6) in (2.5) and (2.15) is a function that is summable and integrable in the sense of Lebesgue on the inter-
val [y, a,] without singularities of 6-function type.

We split the interval of integration in (2.5) and (2.15) into p small parts and we represent the integral
equation (2.15) in the form of the finite sum

4 ] . n
:}-: CEexp [~ n (@0, - N Crexpl—n(@)] = L (2.17)
f=l PESH
The asterisk in (2.17) denotes that the mean value of the function is taken on the appropriate interval.
Similarly to (2.17) we write the solution (2.5) in the form of a finite sum, and we can then use the proper-
ties Aj-A; and B;.

If @y < 6; and Ci* > 0, then according to property Ay, the line
OiA0y

N = I (CFAD,) = m( | C@)as) (2.18)

Gy

is an asymptote to the surface (2.17). Converting to the limit in (2.18) for A9; — 0, we find that C;*A8,
— 0 and one of the branches of the surface T will not have asymptotes, and the angle o; will be the limiting
angle of the tangent to this branch, since the angle ¢ in the equation 7(6) = const equals the angle between
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this line and the z axis. Let §; = @y and Cy > 0. Then from property A, it follows that in the limit as A6
— 0 the equation of the asymptote to surface (2.17) has the form

Y, =g, (2.19)
Thus we have proved Theorem I:

If @y < 6; and Cla;) > 0, then one of the branches of the surface (2.15) does not have asymptotes, and
the limiting value of the angle between the tangent to this branch and the z axis equals a;. If 6; < «,, then
the line (2.19) is an asymptote to the surface (2.15).

In a similar way we prove Theorem II:

if @y > 8y and Clay) > 0, then one of the branches of the surface (2.15) does not have asymptotes, and
the limiting value of the angle between the tangent to this branch and the z axis equals a,. If 6p =0,
then the line 7n = InCp, is an asymptote to the surface (2.15).

Now, using Theorems I and II we can determine the limits of integration a4 and oy in (2.5) and (2.15)
if ¢y < 64 and a4 > Oy, using the equation of the surface 2 in the form (2.8). Whenay = §;and C; > 0, as
the lower limit of integration in (2.5) and (2.15) we can take 6, assuming the unknown function C(8) to be
equal to zero on the interval [6;, oy]. We can proceed similarly in other cases: when @y = 6 or when a,
= Op and oy = 6. “

We obtain the simplest solution of the problem of the fusion of an infinite wedge with apex angle 28,
from (2.5) if we set C; = C4 =1/2, C(6) = 0:

i V«) in? VO gi \]
U=U,| 1l —exp|{ ——% zsin®8,} ch{—% ysin20,] 1 . (2.20)
a 2a ,fj

This solution corresponds to the case in which for a steady-state process of fusion of a wedge the
equation of ifs surface has the form

a
1983
Vo sin? 6,

Inch (_Vigsm 2@0) ~z, 2.21)
2a

If the (xz) plane is a symmetry plane of the surface (2.15), then the coefficients Cj, the angles 6y,
and the function C(8) should have the properties

CO) =C{n—0), C,=C (2.22)

n—i+lr ei = Jf - 911.—i+1'

We proceed to the solution of the integral equation (2.15) for C(8) and C;. We consider (2.17) in-
stead of (2.15). It is obvious that for each angle 8; we find an angle GQ‘ such that 8; and 61’; will belong to
the same small interval, into which the interval of integration [&y, o4] is divided. We introduce the no-
tation

Ciexp[—n (8F)] A0, + C,exp [—n(8)] = B, exp [— 0 (8)]. (2.23)
We note that the number of terms in the second sum of (2.17) is constant, and in the first sum it de-
pends on the partition step of the interval [@(, ®y]. Therefore, generally speaking, each term of the
second sum will correspond to a term of the first sum according to the scheme (2.23)., There exists some
term from the first sum that does not have a corresponding term from the second sum in (2.17), For con-
venience we denote such terms from the first sum in (2.17) as
CFA8, = B,. (2.24)

Now, using (2.23) and (2.24), Eq. (2.17) takes the form

2
' B, exp[—n(0 )] =1. {2.25)
ot

We recall that on the surface T the dependencies n(ef;) have the form
1 (0F) Yo g 0 [, (s) sin 0F — f, (s) cos B 1. (2.28)
o

The problem of finding C;j and C(0) reduces to the problem of finding the coefficients By of Eq. (2.25).
Giving the parameter s, which appears in this equation, p different values, we obtain a closed system of
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linear algebraic equations for the coefficients Bi:
p

2 B,exp[—1, @] =1, 1,05 =20 for s=s. (r=1...p). (2.27)
k=1
For the solvability of system (2.27) we require a nonzero determinant of this system, which is equiv-
alent to the requirement that the homogeneous integral equation

229 n
| C(®)exp(—m)dd+ 2 Coexp{—n;) =0 ' (2.28)
% =1
has only the trivial solution
C® =0, C,=0. {2.29)

This requirement coincides with the well-known theorem of uniqueness of the solution of an integral
equation. The kernel exp (—n) does not have a singularity; therefore, the system of equations {2.27) al-
ways has a unique solution. We assume that the coefficients By from system (2.27) have been found and it
now remains to determine the coefficients Cij and Cfg . According to (2.24), some of the coefficients Cﬁ<
equal the ratio Bfg/Aek. The remaining Cfé< and C; should be determined from Egs. (2.23). Before calcu-
lating these coefficients we must determine their number and the value of those angles 6; that correspond
to the coefficients Cj. To do this we must pay attention to the order of magnitude of By from (2.23) and
(2.24). Since Cl: and Cj are assumed to be finite, the coefficients By from (2.23) have a finite value, and
the coefficients By from (2.24) are small and their magnitude depends on the step Af,. Furthermore, the
number of finite Bk for a sufficiently small step is independent of the magnitude of this step. Thus the
number of coefficients Cj equals the number of coefficients By, assuming a finite value for sufficiently
small Af. Based on the index of the final value of Bi we find the corresponding interval of variation of
the angle 6. The mean value of 8 in this interval can be taken equal to the value of the angle ;. It re-
mains for us to find Cj and C{* from (2.23).

We note that Cj in (2.23) is a term that is independent of the step Af;, whereas the second term de-
pends on this step. In connection with this, we divide the interval {a;, o4] into small parts by two methods
with steps A6i< and AGI';. Then the final quantities Bf«: and B{;, determined from system {2.27) by two meth-
ods, should have close values, and the intervals corresponding to them should have a common part. Ac~
cording to (2.23) for B{ and B{' we have the expressions

Cyexp [— (8] -~ CF exp [—n (BF)] A6; = Biexp [—n (6],
Crexp[—n(0)] -- CF exp [— n (0F")] A0} = B exp [—n (6}7)]. (2.30)
In (2.30) we can take approximately
CH =CF, oF~0}. (2.31)

Taking the difference of the left and right sides of the two equations in (2.30), we obtain for Ci* the
expression

C* = (B;—BY), (A0, —AD)). (2.32)
Eliminating Ci* from (2.23) using (2.32) and assuming
0, ~0F, : (2.33)
for finding Ci we arrive at the formula
= B, —CF D, (2.34)

It is obvious that the approximate equalities (2.31)-(2.34) with reduction in the partition of the inter-
val [y, a,], when Afij —~ 0, in the limit, become exact equalities. In the realization of the proposed nu-
merical method for the coefficients Cj, the functions C(#) and the angles 6;, approximate values are found;
however, the solution (2.5) will exactly satisfy the heat equation, and only the boundary condition on the
fusion surface  from (1.8) will be satisfied approximately.

If in the integral equation (2.15) the coefficients Ci and the angles 6; are known, then the solution of
this equation can be sought in the form of an expansion of C(f) in eigenfunctions of the kernel exp (—1).
However, difficulties arise in the proof of the convergence of this method owing to the semiboundedness
of the region of the fused body. It is interesting to note that the proposed method of solution of two~dimen-~
sional problems on the steady-state regime of fusion of a body from the point of view of the numerical

1027



realization is considerably simpler than the solution of a system of ordinary first-order differential equa—
tions for solution of the unsteady one-dimensional Stefan problems [3, 4].

3. Carrying out the same reasoning as for the plane case, we obtain for the three-dimensional
problem a solution in the form

27 1741 i=m,, ny=
U=Ua1—{ do | CODem(—md— 3 Cyexp(—ny) -
e 0 & (@) i, j=1
o ny - m, /2 ‘
S‘E C 0 €XP (— M) AP — Z‘ g Cy: exp(—1y;) d@] »
0 j=I ) i=] oc(tp,) (3_1)

10, ¢) = —V—"— sin 6 (zsin8 — x cos 8 cos ¢ — y cos 8 sin @),
a

M =10 9 M =n{0; ) Mo =1(0, @,).

Let the fused body have a front point through which the z; axis is drawn parallel to the z axis. We
denote by T the curve that is obtained for intersection of the fusion surface with the half-plane drawn
through z; at an angle ¢ to the (xz) plane. Just as in the plane problem, we prove here that the angle a (),
which is the lower limit in the integrals (3.1), equals the limiting value of the angle between the tangent
to I' and the z; axis. Furthermore, the solution (3.1) has properties similar to the properties A;~A; and
B, in the plane problem.

In (3.1) the unknowns are the functions C(9, @), Cjolp), and Cy;(6), the coefficients Cjj, and the angles
61, j under each summation sign. We write the equation of the fusion surface £ inparametric form

X=x(S, ) Y=YyBy S Z2=2(5, S). (3.2)

Substitution of (3.2) and (3.1) into the boundary condition (1.8) leads to a Fredholm integral equatlon
of the first kind in the unknowns C, Cjos Cois Cij» 0, and 7B

2a"c n/f’ 21 n,
{do | Cexp(—m)dd-+ j“ Co €Xp (—1y0) dp +
0 o () j=1
my T/2 i=my, j=ng (33)
+3 | Cuexp(—m)dd+ ¥ Cpexp(—ny) =1 w2>a>0.

i=1 o () i, j=1
Detailed proofs and the solution of the integral equation (3.3) will be given in a subsequent paper. In
conclusion we present a solution of a problem with axial symmetry. We introduce the notation
X =rcosVy, y=rsiniy. (3.4)

Then we obtain from (3.1) for the variable n
n= Yo sin 8 [z sin @ — r cos 0 cos (¢ — b)]. (3.5)
a

Substitution of (3.5) into (3.1) after a number of simplifications leads to the solution of the problem
of the fusion of an axisymmetric body
/2 n
U=Ux[l— [ A@)exp(—n) /o) — X Arexp(— ) Iy(n:1)]
8, =
0

%
Yo zsin*0, 1w, = Yo r sin 20.
a 2a

(3.6)
N, =
Here the function I;(z) = Jy(iz) is a Bessel function of the first kind of zero order with an imaginary argu-

ment [5]. The simplest solution of the problem from (3.6) for the fusion of a cone with apex angle 26 has
the form '

U:Uoo[l—Aexp (—l/i zsinzeo)lo(v—"rsin%o)}. (3.7)
a 2a
NOTATION
U is the temperature;
z is the surface of the fused body;
x, y, 2) are rectangular Cartesian coordinates;
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is the time;

is the heat flux supplied from the external hot flow to the fused body;

is the latent heat of the phase transformation;

is the velocity of the fused surface Z;

is the normal to the surface £, directed toward the solid phase;

is the thermal conductivity;

is the density;

is the specific heat;

is the thermal diffusivity;

is the velocity;

is the temperature at points of the solid infinitely distant from Z;

is the shortest distance from a point of the body to Z;

are the constants of integration;

are the self-similar variables;

is the parameter in the equation of the fusion surface;

are the partial derivatives of the function ® with respect to y and z;

is the generalized Dirac delta function;

are the angles between the normal to the plane § = 0 and the x and y axes, respectively;
is a Bessel function of the first kind of zero order with an imaginary argument;
is the angle between the plane £ = 0 and the z axis.
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